QUDA  1.0.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
Functions
blas_magma.h File Reference
#include <cuda.h>
#include <cuda_runtime.h>
#include <string>
#include <complex>
#include <cuComplex.h>
#include <stdio.h>
#include <enum_quda.h>
Include dependency graph for blas_magma.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

void OpenMagma ()
 
void CloseMagma ()
 
void magma_Xgesv (void *sol, const int ldn, const int n, void *Mat, const int ldm, const int prec)
 
void magma_Xgeev (void *Mat, const int n, const int ldm, void *vr, void *evalues, const int ldv, const int prec)
 
void magma_Xgels (void *Mat, void *c, int rows, int cols, int ldm, const int prec)
 
void magma_Xheev (void *Mat, const int n, const int ldm, void *evalues, const int prec)
 

Function Documentation

◆ CloseMagma()

void CloseMagma ( )

Definition at line 323 of file blas_magma.cu.

References errorQuda.

Referenced by closeMagma().

Here is the caller graph for this function:

◆ magma_Xgeev()

void magma_Xgeev ( void *  Mat,
const int  n,
const int  ldm,
void *  vr,
void *  evalues,
const int  ldv,
const int  prec 
)

Computes for an n-by-n complex nonsymmetric matrix Mat, the eigenvalues and right eigenvectors.

Parameters
MatMatrix field containing the input matrices on the CPU
nDimension of the problem
ldmMatrix leading dimension
vr(out) array containing right eigenvectors
evalues(out) array containing eigenvalues
ldvArray leading dimension
precMatrix precision

Definition at line 275 of file blas_magma.cu.

References errorQuda, and Mat().

Referenced by quda::ComputeHarmonicRitz< libtype::magma_lib >().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ magma_Xgels()

void magma_Xgels ( void *  Mat,
void *  c,
int  rows,
int  cols,
int  ldm,
const int  prec 
)

Solves the overdetermined (rows > = cols), least squares problem

Parameters
MatMatrix field containing the input matrices on the CPU
cArray containing source/solution vector
rowsNumber of rows of the matrix Mat
colsNumber of columns of the matrix Mat
ldmMatrix leading dimension
precMatrix precision

Definition at line 286 of file blas_magma.cu.

References errorQuda, and Mat().

Referenced by quda::ComputeEta< libtype::magma_lib >().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ magma_Xgesv()

void magma_Xgesv ( void *  sol,
const int  ldn,
const int  n,
void *  Mat,
const int  ldm,
const int  prec 
)

Solves a system of linear equations

Parameters
sol(in/out) array containing source (in). Overwritten by solution (out)
ldnArray leading dimension
nDimension of the problem
MatMatrix field containing the input matrices on the CPU
ldmMatrix leading dimension
precMatrix precision

Definition at line 265 of file blas_magma.cu.

References errorQuda, and Mat().

Referenced by quda::ComputeHarmonicRitz< libtype::magma_lib >(), and quda::Deflation::operator()().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ magma_Xheev()

void magma_Xheev ( void *  Mat,
const int  n,
const int  ldm,
void *  evalues,
const int  prec 
)

Computes for an n-by-n complex symmetric matrix Mat, the eigenvalues and eigenvectors.

Parameters
MatMatrix field containing the input matrices on the CPU, and eigenvectors on exit
nDimension of the problem
ldmMatrix leading dimension
evalues(out) array containing eigenvalues
ldvArray leading dimension
precMatrix precision

Definition at line 296 of file blas_magma.cu.

References errorQuda, and Mat().

Referenced by quda::ComputeRitz< libtype::magma_lib >(), quda::Deflation::reduce(), and quda::Deflation::verify().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ OpenMagma()

void OpenMagma ( )

Definition at line 307 of file blas_magma.cu.

References errorQuda, getVerbosity(), printfQuda, and QUDA_VERBOSE.

Referenced by openMagma().

Here is the call graph for this function:
Here is the caller graph for this function: